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Collapsing bacterial cylinders
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Under special conditions bacteria excrete an attractant and aggregate. The high density regions initially
collapse into cylindrical structures, which subsequently destabilize and break up into spherical aggregates. This
paper presents a theoretical description of the process, from the structure of the collapsing cylinder to the
spacing of the final aggregates. We show that cylindrical collapse involves a delicate balance in which bacterial
attraction and diffusion nearly cancel, leading to corrections to the collapse laws expected from dimensional
analysis. The instability of a collapsing cylinder is composed of two distinct stages: Initially, slow modulations
to the cylinder develop, which correspond to a variation of the collapse time along the cylinder axis. Ulti-
mately, one point on the cylinder pinches off. At this final stage of the instability, a front propagates from the
pinch into the remainder of the cylinder. The spacing of the resulting spherical aggregates is determined by the
front propagation.
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The formation of a singularity—the divergence of
physical quantity in finite time—is central to diverse fiel
@1#, including nonlinear optics, gravitational collapse, a
fluid mechanics. The structure of singularities has be
worked out in many examples for which a physical quan
blows up at a spatial point@2–4#. Typically, singular dynam-
ics are self-similar: the characteristic scale separation
tween the singular and regular parts of the solution lead
the slaving of the spatial structure to the time dependence
scaling laws. The situation can be more complicated w
many singularities form collectively and simultaneously.
this paper, we analyze a simple example for which multi
singularities form in a short time. This work was motivat
by a recent experiment in bacterial chemotaxis@5–7#.

The experimental observation is shown in Fig. 1. In t
first panel a diffuse cloud ofEscherichia coli~E. Coli! cov-
ers the depth of a Petri dish filled with agar. Note that ev
though this experiment takes place in a Petri dish with a t
agar layer, it isnot quasi-two-dimensional, as shown in Re
@7#. The dynamics in the thin direction are crucial to t
pattern formation. Other experiments on bacteria have ex
ined the case where the bacteria do not penetrate the aga@8#;
our arguments do not apply to such experiments that
confined to two dimensions.

The environment is prepared so that theE. coli excrete an
attractant; each bacterium attracts all the other bacteria, a
cloud can collapse. In the second panel, the diffuse cl
collapses as a cylindrical structure, with highest bacte
density on the cylinder axis. In the final panel, the cylind
breaks down into spherical aggregates. In this paper, we
lyze the cylindrical collapse of bacteria and the stability
the collapsing cylinder.

Chemotaxis inE. coli provides a good model system fo
studying singularity formation. The biochemical response
E. coli to a changing environment has been well charac
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ized @9–13# over the past 25 years, so we have a good
derstanding of how the bacteria sense and respond to
environment. As a consequence, it is possible to write do
a ‘‘first-principles’’ hydrodynamic theory for the motion o
many bacteria@14,15# in which the response coefficients a
measurable. Quantitative comparison between theory and
periment is possible, and any discrepancies can be tra
directly to the biochemistry of individual bacteria@7#. The
application to singularity formation arose from the rece
discovery by Budrene and Berg@5,6# of an assay in whichE.
coli excrete aspartate, an amino acid that is also an attrac

1

FIG. 1. Experiment showing formation and instability of a co
lapsing bacterial cylinder~reproduced from@7# with permission
from the Biophysical Society!. The first panel shows a diffuse clou
of bacteria filling the depth of a Petri dish filled with agar, whic
then collapses~second panel! into a cylindrical structure. The cyl-
inder subsequently destabilizes into spherical aggregates. Deta
the experiments are described in Budrene and Berg@5,6#.
©2001 The American Physical Society04-1
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for nearby bacteria. Attractant diffusion drives aggregat
because it leads to an effective force between individual b
teria; a higher density of bacteria in a given region leads
higher attractant concentration, which drives a further
crease in the bacterial density.

The initial interest in the Budrene-Berg experiment w
stimulated by the symmetrical patterns~shown in Refs.@5,6#!
that form when chemotactic bacteria are seeded in the ce
of a Petri dish. For a review of the large literature on bac
rial colony development, see Ref.@8#. For the Budrene-Berg
experiments in particular, several theories have been de
oped for these patterns, most of which@16–21# view the
pattern formation as resulting from a linear instability of
~one-dimensional! traveling wave of bacteria. Recently,
was pointed out@7# that each of the aggregates in a patte
corresponds to a density singularity in the hydrodynamic
scription of the bacteria. Therefore, the pattern formation
pends crucially on the dynamics of singularity formatio
Singularities in chemotaxis were anticipated by Nanudj
@22# and Childress and Percus@23# in studies of mathemati
cal models of chemotaxis. An important feature, underst
first by Childress and Percus, is that chemotactic collapse
a critical dimension: although collapse to an infinite densi
sheet is mathematically impossible, collapse to infinite d
sity lines and points both can occur. It was argued in Ref.@7#
that these facts crucially affect the patterns that can form

In particular, Fig. 1 shows a step in the formation of a
gregates. The initially diffuse band~filling the depth of agar!
cannot form a singularity by collapsing only one of its d
mensions to zero thickness; instead it collapses into a cy
der ~contracting two of its dimensions simultaneously!. The
cylinder later destabilizes to form aggregates, for which
three dimensions contract simultaneously. Models@16–21#
viewing aggregate formation as the linear instability of
band cannot account for these experimental observati
These two different pictures of how aggregates form lead
different conclusions about which biochemical paramet
set the wavelength and structure of the patterns. For
‘‘collapsing cylinder’’ mechanism advocated here, the ch
acteristics of the pattern are set by the same biochem
cutoff that prevents an aggregate from reaching infinite d
sity.

Cylindrical collapse is also important when an initial
uniform-density cloud of bacteria breaks into aggrega
Linear stability analysis of the uniform-density state predi
that the cloud directly breaks down into spherical aggrega
However, experiments@24# find that the clumping is hierar
chical: the uniform density cloud first collapses as cylindri
structures, which then break into spherical aggregates.
important unsolved issue is to explain the geometry of
high density regions during collapse, and to predict the fi
distribution of aggregates.

In this paper, we use a combination of simulations a
asymptotics to describe the breakup of a cylinder in th
principal steps~Fig. 2!. First, the bacteria collapse as a cy
inder towards a line of infinite density. In the second st
uniformity along the cylinder axis is broken, and a singul
ity develops at one point. Finally, the remaining cylind
breaks up, producing a sequence of spherical aggregates
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primary conclusion connecting the present theory with
experiments is that the final spacing between aggregate
determined by the local depletion of chemicals that ma
aspartate production possible. According to Budrene@24#,
oxygen is the most likely depleted quantity. This depende
of the aggregate spacing on initial overhead oxygen conc
tration in the cell could be directly tested in future expe
ments, and would serve to discriminate this theory fro
those based on pure linear stability analysis.

In the following section, we review the basics of chem
taxis, and discuss details necessary to understand
Budrene-Berg experiments. In Sec. II, we review previo
results on chemotactic collapse. Section III describes our
tempt to characterize the cylindrical collapse of the bacte
Cylindrical collapse~in which two dimensions of the cloud
contract simultaneously! is a critical case@23,25#, for which
diffusion and attraction nearly exactly balance. This critic
ity complicates attempts to solve the collapse. We attemp
to verify numerically the solution for the cylindrical collaps
proposed by Herrero and Velazquez@26#. We encountered
numerical convergence difficulties that are described in A
pendix B. In Sec. IV, we perform a stability analysis of
collapsing cylinder. Perturbations to the cylinder can be

FIG. 2. Schematic~not to scale! of the three phases of cylindri
cal collapse. Top, a collapsing cylinder is formed. Middle, the c
inder becomes modulated. Bottom, the modulated cylinder pinc
off and contracts, leaving a series of spherical aggregates. Note
this sketch does not show the radial contraction of the cylind
which takes place as it collapses.
4-2
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COLLAPSING BACTERIAL CYLINDERS PHYSICAL REVIEW E64 061904
scribed by a ‘‘phase equation’’ for the singular time@27#.
Solutions to this envelope equation explain full numeri
simulations of a modulated cylinder. Section V describes
final stage of the breakup of the cylinder, after the cylind
has pinched off at a point. Stability analysis predicts
breakup of the remaining column of bacteria, a situat
analogous to a propagating Rayleigh instability in a liqu
column@28#. We conclude with a comparison to experime
tal results and experimentally testable predictions.

I. BACTERIAL CHEMOTAXIS

Chemotaxis refers to the migration of bacteria up che
cal gradients. ForEscherichia coli, the basis of chemotaxis i
largely understood@29,30#: in the absence of a chemical gr
dient, anE. coli bacterium performs a random walk@31#.
When chemical gradients are present, the bacterium’s in
nal biochemical reactions detect the gradients and coup
the bacterial movement system. This sensing biases the
dom walk, and the bacterium has a net drift towards a che
cal attractant. Under special conditions, the bacterium
excrete the chemoattractant aspartate@5,6# by converting car-
bon and nitrogen sources~succinate and ammonia, respe
tively! in its environment. In these experiments, noexternal
chemical gradients are present. Instead, each bacte
moves in response to the attractant produced by other ba
ria. Thus, the excretion of attractant produces a long-ra
force between the bacteria, and induces complicated inte
tions in the colony.

The equations for the collective motion of the bacteria c
be derived~with no free parameters! from the underlying
biochemistry @15#, allowing quantitative comparison be
tween theory and experiment. The basic equations for
bacterial densityr and the attractant concentrationc are

]r

]t
5Db¹2r2“•~kr“c!1ar, ~1!

]c

]t
5Dc¹

2c1ar. ~2!

HereDb is the bacterial diffusion constant,k the chemotactic
coefficient, a the rate of bacterial division,a the rate of
attractant production, andDc the chemical diffusion con-
stant. The terms in Eq.~1! include the diffusion of bacteria
chemotactactic drift, and division of bacteria. Equation~2!
expresses the diffusion and production of attractant.

Equations of this type were first used to describe bact
by Keller and Segal@32#, and, with variations, have been th
subject of extensive investigations~see, e.g.,@33,34#!. For E.
coli, Schnitzeret al. @14# and Schnitzer@15# established the
connection between the time-averaged properties of the
terial response and the parameters in Eqs.~1!, ~2!. Thus, the
extensive studies of individual bacteria provide a justificat
for the equations, as well as measurements of the co
cients. There is one complication worth mentioning: Spud
and Koshland@35# showed thatE. coli have ‘‘non-genetic
individuality,’’ manifest in a distribution of tumble times~by
about a factor of 2! between genetically identical bacteria. A
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a consequence, both time-averaged and ensemble-ave
properties of the bacteria are necessary to predict hydro
namic coefficients; in addition, the dynamics must be su
that the distribution of bacteria in the ensemble does
change with time.

It is convenient to nondimensionalize Eqs.~1!, ~2! by
choosing a characteristic density equal to the maximum
tial densityro . The characteristic scale of attractant isDb /k.
The density then determines the length scale and time s
according toH5ADbDc /(akro) andto5Dc /(akro). Typi-
cal numerical values areDb5731026 cm2 sec21, Dc
51025 cm2 sec21, k510216 cm5 sec21, and a
5103 sec21 bacteria21. For an experiment@7# that hasro
5106 cm23, the length scale is 260mm and the time scale
100 sec. The equations become

]r

]t
5¹2r2“•~r“c!1dr, ~3!

e
]c

]t
5¹2c1r, ~4!

wheree5Db /Dc andd5ato . For the experiments shown i
Fig. 1, cells divide much more slowly than the collapse o
curs; the time scale for cell division is'2 h, giving d
'0.01. Therefore, we setd50. The value of the parametere
varies. For experiments in semisolid agar, the diffusion
bacteria is much slower than attractant diffusion, which m
tivates the limite50 @7#. For experiments on bacteria in
liquid culture, e'1. We will consider both limits in this
paper. Thee50 limit is convenient for asymptotic calcula
tions. Our numerical simulations give results independen
e in the range between 0 and 1.

For analytic calculations, working with the mass can
useful. For reference, we show the form of the equatio
here. Consider a radially symmetric density distribution, c
tered at the origin, which is symmetric ind directions. Define
the mass contained within a radiusr as

m~r !5E drr d21r. ~5!

This definition~and the choicee50) allows us to eliminate
the concentration and write Eqs.~3!, ~4! as

]m

]t
5r d21

]r

]r
1rm. ~6!

II. COLLAPSING SOLUTIONS

The equations for bacterial density and attractant conc
tration have collapsing solutions, for which the density go
to infinity in finite time. In the experiments, the density
bacteria does not become infinite. However, the density
increase by five orders of magnitude, and we expect tha
the experiments the bacteria follow the collapsing solut
up to some density cutoff. In this section, we introduce
types of allowed collapsing solutions. First we give heuris
arguments to explain why one-dimensional collapse~onto
4-3
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M. D. BETTERTON AND MICHAEL P. BRENNER PHYSICAL REVIEW E64 061904
planes! is not allowed, three-dimensional collapse~onto
spheres! is possible, and two-dimensional collapse~onto cyl-
inders! is marginal. We then review quantitative results. B
cause the length scale of density variations near a singul
is small, we can do asymptotics near the point where
density blows up. This leads to a similarity solution for t
spherical collapse@36#.

A. Critical dimension for collapse

The competition between diffusion and collapse leads
critical dimension. In this problem, the critical dimension
2, and one-dimensional collapse—collapse to a pla
structure—is forbidden.

We make qualitative arguments to explain the critical
mension by comparing the chemotactic and diffusive flu
in a contracting structure. For a sheet of thicknessl , the
inward diffusive flux is of order@see Eqs.~1!, ~2!#

JD;2Db

r

l
. ~7!

The chemotactic flux follows by integratingDcc9;ar ~the
prime denotes differentiation with respect tor ) and defining
M1D as the mass per unit area of the planar region. Then
chemotactic flux is

JC;krc8;akrM1DDc
21 . ~8!

If the system collapses onto a plane, the thickness of
sheetl→0. The diffusive flux blows up while the chemota
tic flux is unchanged. Thus a plane with small thickness
unable to reach infinite density, because diffusion eventu
stops the collapse.

The situation is different for higher-dimensional stru
tures. For symmetric spherical collapse~three directions con-
tract simultaneously!, the chemotactic flux is singular. Whe
we balanceDc¹

2c;ar, we find (r 2c8)8;ar 2r/Dc . This
implies a concentration gradientc8;aM3D/( l 2Dc), where
M3D is the mass contained within a sphere of radiusl . The
net inward flux of bacteria is then

J;
2Dbr

l
1

akrM3DDc
21

l 2
. ~9!

As l→0, the inward flux~second term! dominates and col-
lapse occurs.

In two dimensions, we encounter a subtlety. Assum
cylindrical collapse and repeating the dimensional argum
we have (rc8)8;arr/Dc , and c8;aM2D/( lD c). ~Here
M2D is the mass per unit length of the cylinder.! The inward
flux is

J5
2Dbr1akrM2DDc

21

l
. ~10!

Two-dimensional collapse is critical; the chemotactic a
diffusive fluxes scale the same way withl . According to this
simplified argument, there is a net inward flux ifM2D
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.DcDb /(ak), which suggests that a system with mass abo
this critical value collapses.

B. Similarity solutions

We now quantify the preceding dimensional argume
and collect the known solutions to the chemotactic equatio
As discussed above, the analytic solutions are derived w
e50. First, consider one-dimensional collapse. Making
substitution@7,37# v5¹c5]xc in Eqs.~3!, ~4! implies

]v
]t

5
]2v

]x2
2v

]v
]x

. ~11!

This is the Burgers’ equation; singular solutions to this eq
tion do not exist@38#.

In d52 and higher, density singularities can develo
~Throughout this discussion,d refers to the number of simul
taneously contracting dimensions.! In three dimensions, the
nature of the blowup is straightforward. The characteris
length scale~L! varies in time, and the spatial structure
determined by the changes inL. A singularity corresponds to
L→0. We guess the form of the similarity solution by ba
ancing the different terms in Eqs.~3!, ~4!. The diffusive dy-
namics implyL5At* 2t5At, with t* the singular time and
t the time to singularity. Defining a dimensionless similar
variable h5r /L, we find the scaling form of the density
concentration, and mass by balancing all terms in the eq
tions

r5
1

L2
R~h!, ~12!

c5C~h!, ~13!

m5Ld22M ~h!. ~14!

In writing this form of solution, we have assumed rad
collapse at the origin (r 50). For a similarity solution to be
valid, it must obey the correct boundary conditions: the d
sity r and the attractant concentrationc must be time-
independent far from the singularity, which requiresR
;h22 andC; constant ash→`.

Plugging in the scaling form gives an ordinary different
equation in the similarity variableh, where here the prime
denote differentiation with respect toh:

hM 8

2
5hd21R81RM, ~15!

hd21R5M 8. ~16!

In d53, the similarity equation can be solved exactly; t
one stable solution, found by Kadanoff@36#, is

R5
4~31h2!

~11h2!2
. ~17!
4-4
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COLLAPSING BACTERIAL CYLINDERS PHYSICAL REVIEW E64 061904
As demonstrated in Ref.@36#, this similarity solution agrees
well with numerical solutions.

III. CYLINDRICAL COLLAPSE

In this section we describe the two-dimensional colla
ing solution of the evolution equations. As shown below
solution to the similarity equations~15!, ~16! that satisfies
the necessary boundary conditions is not possible whed
52. Nevertheless, a collapsing solution with a density s
gularity does exist@25#. Here we describe our attempt t
simulate the cylindrical collapse. Our work on this proble
was complicated by numerical difficulties, leading us to co
clude that our numerical scheme has not converged.~We
discuss the numerics in more detail in Appendix B.! Because
of these problems, we are unable to evaluate the form of
logarithmic correction to the collapse scaling laws. Here
give an outline of the basic features of the cylindrical c
lapsing solution, and leave the full numerical solution as
open problem.

Herrero and Velazquez@26# used formal asymptotics to
construct the solution for a collapsing cylinder, and propo
the form of the logarithmic correction. We see the qualitat
features of the Herrero-Velazquez solution in our numer
however, we are unable to verify their form of the logarit
mic correction.

In two dimensions, there is no solution to Eqs.~15!, ~16!
that satisfies the boundary conditions. To see this, note
for d52 the similarity equations can be integrated to giv

R5eh2/4expS E M

h D . ~18!

This form for R cannot satisfy the boundary conditions th
the density and mass be stationary at largeh, becauseR
grows without bound ash→`.

Nevertheless, a similarity-type solution to the equatio
exists, the basic features of which we can capture in a si
lation, as shown in Fig. 3.~The numerical method is de
scribed in Appendix A; its most important feature is the me
refinement, which frequently moves mesh points to be
resolve the singularity@39#.! As the simulation progresses
the maximum density increases. When we examine the s
ing of the maximum density and the length scaleL, we find
r;L22 andL;At, as expected for a similarity solution.

How can this be consistent with the argument that
similarity solution exists? We believe that corrections to
similarity solution arise to solve this problem. Although th
basic self-similar scalingrm;L22 is preserved, the time de
pendence ofL can be different than what the simple dime
sional argument suggests. This leads to slow~logarithmic!
time dependence ofL/At.

The structure of the solution is shown in Fig. 4, where
curves have been collapsed by rescaling the density and
radius. AsL→0, the inner collapsing region converges to
pseudostationarysolution, which has the same spatial depe
dence as the stationary (]r/]t5]c/]t50) solution to the
original equations~3!, ~4!. The pseudostationary solutio
scales asr;h24 for large h, as shown in the figure. Th
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inner region matches onto an outer region wherer;h22, as
required for the collapsing solution to be stationary far fro
the origin. The inner pseudostationary solution has a dim
sionless mass of 4. Thus, the evolution of the collapse h
specific physical interpretation. In dimensionless~similarity!
variables, the inner region expels excess mass to appr
M54. Matching between the inner and outer regions sho
determine the dynamics.

To illustrate the nature of the nearly self-similar solutio
we define the collapse rateA(t)52L̇L. ~Note that the col-
lapse rate of the system isL̇/L; we can make a dimensionles
collapse rate by multiplying by the time scalet;L2.! For
exactly self-similar collapse, the collapse rate2L̇L51/2 is a

FIG. 3. Cylindrically collapsing solution. Top, density as a fun
tion of radius for the cylindrical simulation. The different curve
correspond to different times. Middle, the maximum density
characteristic length scale. The solid line has exponent22. Bottom,
the length scale of the cylinder vs time to the singularityt. The
solid line has exponent 0.5. The length scale is defined as the ra
where the density decreases from its maximum by a factor of 5
4-5
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M. D. BETTERTON AND MICHAEL P. BRENNER PHYSICAL REVIEW E64 061904
constant. In the presence of corrections, the collapse
goes asymptotically to zero.

We rewrite the similarity equations assuming thatM and
R depend on the similarity variableh and ~slowly! on time.
The similarity equations are then

L2
]M

]t
1AhM 85hR81RM, ~19!

hR5M 8. ~20!

Note that here the time derivative ofM refers only toexplicit
time dependence of the mass; the second term takes
account the time dependence slaved to the varying len
scale.

We can solve the similarity equations in the inner regio
As the collapse proceeds, it slows down. This motivates u
look for a solution withA50; that is, a pseudostationar
solution~in similarity variables!. This pseudostationary solu
tion solves Eqs.~19!, ~20! when A50 and ] tM50. The
equation for the mass is then

hM 91M 8~M21!50. ~21!

Exact solutions to this equation are

R05
8

~11h2!2
, ~22!

M05
4h2

11h2
. ~23!

From the formula forM0 we see an important feature o
the stationary solution: the total mass is 4 in dimensionl
units. This reflects a rigorous result@25,36#: collapse will
occur if and only if the total mass per unit length of th
cylinder satisfies M.4. ~For M,4, no collapse is
possible—the system evolves to a constant density.! When
M.4, collapse occurs; the solution converges toward a
lapsing mass precisely equal to 4. In similarity variabl
therefore, mass flows away from the origin.

FIG. 4. Similarity profiles. The density divided by the maximu
density vs the similarity variableh5r /L. The different curves are
the same as those shown in the previous figure. The solid line in
inner region is a power law with exponent22; the line in the outer
region has exponent24.
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Compare this expression forR0 to the numerical density
profiles in Fig. 4. The shape of the profile confirms that t
pseudostationary solution holds in the inner region. At la
h, the stationary solution hasR0;h24, while the boundary
conditions requireR;h22. The inner solution to the equa
tions must, therefore, match an outer solution, as shown
Fig. 4.

Note that the crossover between inner and outer solut
will occur at some coordinateh* , when AhM 8;Ah2R
;RM @see Eq.~19!#. This gives

h* ;A21/2. ~24!

The matching between inner and outer solutions leads
length scaleL of the form L5At/ f (ln t), where f is the
correction to the dimensional scaling. An analysis of th
matching was performed by Herrero and Velazquez@26#;
their result gave the correction term

f ~ ln t!5
At

L
;exp~A2/2Au ln tu!. ~25!

We were unable to compare our numerical results to
formula; see Appendix B for details. In the remainder of th
paper, we use the fact that the logarithmic correction exi
but the results do not require the exact form off (ln t).

IV. EVOLUTION OF A MODULATED CYLINDER

A collapsing cylinder eventually breaks into spherical a
gregates. In this section, we derive an envelope equation
describes how modulations to the cylinder evolve. The ch
lenge is to describe acollapsingcylinder. Collapse amplifies
initially small perturbations. Therefore, small variation
along the cylinder~in density and the radial length scale!
become large. We can perform a valid perturbation analy
by studying variations in the singular timet* .

In the original similarity solution, the singular timet* is
undetermined; ift* changes by a constant, the solution r
mains valid. Allowing slow spatial variation int* breaks this
symmetry. Therefore, we expect the variation oft* to pro-
duce slow dynamics in space and time. Because this mod
the most slowly decaying, it dominates the evolution of
cylinder. We derive a phase equation, an approach use
many problems when stability is governed by a slow mo
associated with a broken symmetry@27#. Phase equations
@40# were invented to understand problems such as con
tion, where the relevant symmetry is translation, and the
bility analysis is relative to a traveling wave solution. Earli
research moved towards applying phase equations to si
larities: in work on blowup in the semilinear heat equatio
Keller and Lowengrub@41# derived a transformation from a
blowing-up variable to one that vanishes, and they pertur
in the vanishing variable. Also in the context of the semili
ear heat equation, Bernoff@42# has examined how the singu
lar time varies along a cylinder.

We compare solutions of our phase equation to full n
merics and show that the evolution of a modulated, colla

he
4-6
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COLLAPSING BACTERIAL CYLINDERS PHYSICAL REVIEW E64 061904
ing cylinder is well described by the simplified phase eq
tion.

A. Derivation of a phase equation

Here we give a flavor of the derivation of the phase eq
tion; for details see Appendix C. We seek an equation for
dynamics oft(z,t)5t* 2t5t01T(z,t)2t. Slow variation
requires that bothT9!T8 and Ṫ!1. Once the collapse time
varies along the axis of the cylinder, the similarity functio
R and C are no longer exact solutions to the equations.
write

R5R0~h!1dR1~h,z,t !, ~26!

C5C0~h!1dC1~h,z,t !, ~27!

where h5r /Lr , the radial length scaleLr5At(z,t)/ f (t),
and f is the~unknown! logarithmic correction. The perturba
tion parameterd is of orderLr /Lz , whereLz is the scale of
the density variation along the axis of the cylinder.

We apply this guess to Eqs.~3!, ~4!, and expand ind. The
lowest-order equation gives the similarity equations~19!,
~20!. At first order, we find an equation of the form

L~R1 ,C1!5F~R0 ,C0!~t t11!1G~R0 ,C0!tzz

1H~R0 ,C0!
tz

2

t
, ~28!

wheretz is the derivative oft with respect toz, and so on.
On the left-hand side, a linear operatorL is acting onR1 and
C1 ; L comes from the linearization of the original equ
tions. The right-hand side contains derivatives of the singu
time multiplied by known functions ofR0 andC0 .

Although R1 andC1 are unknown, the right-hand side
constrained by a solvability condition: any function that
annihilated by the adjoint ofL must be orthogonal to the
right-hand side. That is, ifL†g50 for a nonzerog, then the
inner product@43#

^g,L~R1 ,C1!&5^L†g,~R1 ,C1!&50. ~29!

Hence the right-hand side of Eq.~28! is orthogonal tog. In
this problem~see Appendix C! precisely one nonzerog sat-
isfies L†g50. Taking the inner products leads to a pha
equation of the form

c1~t t11!1c2tzz1c3

tz
2

t
50, ~30!

where the constantsc1 , c2, andc3 can be expressed in term
of the known functionsg, F, G, andH:

c15^g,F~R0 ,C0!&, ~31!

c25^g,G~R0 ,C0!&, ~32!

c35^g,H~R0 ,C0!&. ~33!
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As shown in Appendix C, for a modulated cylinder the pha
equation is

t t11

f 2
5tzz2

tz
2

t
. ~34!

The logarithmic correction terms in this equation~the f 2 in
the denominator! arise directly from the logarithmic correc
tions to the length scale in the two-dimensional solution.
the following section, we show that the logarithms lead
asymptotically different scalings for the radial and ax
length scales of the collapsing cylinder. Hence, a ‘‘poin
singularity that forms on a collapsing cylinder does not ha
the same collapse rate as a collapsing sphere. In the abs
of logarithmic corrections to dimensional scaling, the pha
equation is simply

t t115tzz2
tz

2

t
. ~35!

B. Numerical simulations of a collapsing cylinder

Now we compare solutions of Eq.~34! with a fully non-
linear simulation of a collapsing cylinder. We have foun
two different mechanisms by which modulations of the c
inder can produce singularities: the first is a ‘‘point’’ sing
larity, in which the density blows up at a point on the cyli
der; the second is a ‘‘traveling’’ singularity, which move
along the cylinder axis with a diverging velocity as the s
gularity is reached.

The primary technical difficulty in simulating a modu
lated collapsing cylinder is developing a remeshing alg
rithm to closely approach the singularity. The remeshing
gorithm described here resolves density singularities al
the axis of the cylinder with essentially arbitrary resolutio
The algorithm is based on a simple one-dimensional sche
which redistributes mesh points every 50 time steps to
solve the singularity. The two-dimensional algorithm us
the one-dimensional remeshing scheme along bothr̂ and ẑ
simultaneously; the two-dimensional equations are th
solved by operator splitting. Details of the algorithm a
summarized in Appendix A.

A typical simulation@44# started with az-independent ini-
tial condition, which was allowed to progress until the ma
mum density reached 104. At this point, the radial profile of
the collapse was well approximated by the~two-
dimensional! collapsing similarity solution seen in the two
dimensional simulation. We then added az-dependent pertur-
bation to the density profile, with amplitude much smal
than the ambient density.

The separation of scales hypothesis underlying the d
vation of the phase equation is maintained uniformly in tim
We experimented with different functional forms for the de
sity perturbations; as long as the length scaleLz for variation
in the z direction is longer than the variation in the radi
directionLr , perturbations tended to grow. In all cases, t
relationLz@Lr was maintained. As demonstrated in Fig. 5
radial cross section of the cylinder always revealed den
4-7
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profiles in agreement with the two-dimensional collaps
solution.

1. Traveling singularity

Traveling singularities occur when a steplike perturbat
is placed on the cylinder, increasing the density forz,z0 and
decreasing the density forz.z0. The subsequent evolutio
occurs at the boundary between these two regions. A si
lation of this process is shown in Fig. 6. We find that t
boundary propagates toward the higher density. Heuristic
the higher-density region is beginning to contract as a sph
so its decrease in size is consistent with the beginning
spherical collapse.

This propagating singularity can be described as a s
tion to the phase equation~34! of the form

t5t0f@z2z0~ t !#, ~36!

wheret05t* 2t is the basic phase expected from collap
All the nontrivial space and time dependences are abso
in f andz0 . Inserting into the phase equation, we have

FIG. 5. Radial density profile at a single point on a modulat
collapsing cylinder. Note ther 24 region matched to ther 22 region:
the solution is well described by the two-dimensional similar
solution throughout the collapse~cf. Fig. 3! even in the presence o
a z-dependent modulation.

FIG. 6. Time evolution of the centerline densityr(r 50,z), with
a steplike initial condition. The perturbation is seeded whenr
5104. The highest-density regionpropagatesto the left. Hence, the
spatial extent of the high-density region shrinks as the collaps
approached. Note thatt(z);r(r 50,z)21.
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ṫ0f2 ż0t0f811

f 2
5t0S f92

f82

f D . ~37!

The right-hand side of this equation isO(t0), which be-
comes arbitrarily small as the singularity is approach
Therefore, the left-hand side must be equal to zero, wh
gives

ṫ0f2 ż0t0f81150. ~38!

In this equation,ż0t0 must be independent of time. If w
demand the balanceż0t052A, so the high-density region
propagates to the left~decreasingz). Then

z05A ln t052Au ln t0u.

The solution forf is then

f~h!511e1z/A. ~39!

Figure 6 shows the density along the centerline of
cylinder. The decay of the highest density is exponential
predicted by the phase-equation solution constructed ab
A fit to the numerical data shows that

r~r 50,z!;e(2z/Apr);e(23.1z), ~40!

yielding Apr50.32, the value ofA measured from the profile
shape.

Figure 7 shows the location of the edge of the maxim
density regionz0(t) as a function oft. As predicted by the
phase equation analysis, the figure shows thatz052Au ln tu.
A least squares fit gives the prefactorA ~as measured from
the front velocity! Avel'0.17. The qualitative features of th
numerical simulations are thus in good agreement with
theory. Quantitatively, however, there is a discrepancy:
theory predicts that we should haveAvel /Apr51, while our
numerical simulation givesAvel /Apr'0.5. We believe that
the discrepancy arises because the convergence of ou
merical scheme requires that we keep a smalle'0.1, while
the analysis in the previous subsection assumese50.

,

is

FIG. 7. Location of the edge of the maximum density regi
z0(t) as a function of time. As predicted by the theory, the ed
moves according to the lawz0(t)52Avelu ln tu. Regression gives
Avel'0.17.
4-8
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COLLAPSING BACTERIAL CYLINDERS PHYSICAL REVIEW E64 061904
2. Point singularity

Stationary singularities—blow-up at a spatial point
occur in the numerics for a wide variety of initial condition
We believe that the stationary singularity represents the
neric evolution of a modulated cylinder. Indeed, it is the e
state of the traveling solution just discussed, when the pro
gating wave runs into the reflection-symmetric bound
condition. An instance of this solution is depicted in Fig.

In contrast to the traveling singularity, the logarithm
corrections to the scaling laws are important in this soluti
For our analysis, we take the point of blow-up to be az
50. Satisfying the equation requires that thez length scale
incorporate corrections to the scaling:

t5t0fS z

t0
gh~t!

D 5t0fS j

hD , ~41!

where we have defined the similarity variablej5z/t0
g . The

phase equation becomes

f 22F2f1
j

h
f8S g1

t0

h

]h

]t D11G5t0
122gh22S f92

f82

f D .

~42!

Demanding that the two sides scale the same way in t
~and ignoring thet0h8/h term because it is negligibly sma
close to the singularity!, we have

1

f 2
5

t0
122g

h2
, ~43!

which givesg51/2 andf 5h. ThusLz;t0
1/2f , which differs

from the radial length scaleLr;t0
1/2f 21. The result is

FIG. 8. Time evolution of the centerline densityr(r 50,z) for a
point singularity. The singularity was initiated by placing a pert
bation~symmetric aboutz510) on a uniformly collapsing cylindri-
cal solution.
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Lr
5 f 2. ~44!

This shows that the generic density singularity that for
during the breakup of cylindrical collapse isnot spherical
collapse, but something milder. Locally, since the axial sc
Lz is much larger than the radial scaleLr the structure still
looks like a cylinder. Numerical evidence for this behavior
shown in Fig. 8~although we note that the plots show b
havior during an initial transient shown in Fig. 11 and d
cussed in Appendix B!. The singularity develops a lengt
scale in the axial direction that is much larger than the rad
scale 1/Ar. For example, in Fig. 8, whenr51010 ~so Lr
51025), we findLz;1022. Our numerical algorithms unfor
tunately have not allowed us to find the asymptoticLz /Lr
numerically; the problem is that the separation of scales is
great between the radial and axial scales that one needs m
more mesh points than we can afford to resolve
asymptotic regime.

V. BREAKUP INTO SPHERICAL AGGREGATES

The question of relevance to the experiments is what h
pens next. Once blowup occurs at a spatial point the cylin
has a free end, which changes the nature of the collapse
can no longer use the strategy of the previous sectio
perturbation about a collapsing cylinder—because the ra
structure is no longer closely approximated by the cylindri
solution. The pinchoff drives the dynamics; specifically, t
pinched end of the cylinder forms a traveling wave. Heur
tically, note that an ‘‘edge’’ of bacteria produces a high
concentration of attractant where the density is higher. T
the ‘‘tail’’ of bacteria moves toward higher attractant densi
and a traveling wave can form. Recall that for variation
one spatial dimension the equations reduce to the Burg
equation, which has traveling wave solutions@38#. The con-
traction of a cylinder end has been observed for the bact
@24#, and the traveling waves have been discussed in o
contexts@7#. Here we discuss the instability of the recoilin
end and the final spacing of the spheres.

Note the qualitative similarity between this instability an
the Rayleigh instability of a liquid column@28#. The Ray-
leigh instability is driven by surface tension, and cause
cylinder of liquid to break up into spherical drops. This pro
lem is similar, although more complicated. First, the cylind
is collapsing. The collapse is not present in the Rayleig
instability, and necessitates a different type of perturbat
analysis. Second, this problem has no surface tension,
cause there is no surface—the density varies smoothly.
instability is driven by interactions of the bacteria inside t
cylinder.

Figure 9 shows a set of plots of a retracting cylinder. T
simulation shows that the end of the cylinder collapses a
spherical aggregate, and simultaneously, in front of the
gregate waves travel into the bulk of the cylinder. The c
lapse of a single aggregate corresponds to formation o
singularity in the numerics. In order to continue beyond t
singularity and simulate the formation of an array of agg
gates, we introduced a cutoff that emulates the biochemi
4-9



to
na
e.

pse
of

n-

-

a

the
nd
ng
ble
ase

ing
tant
tur-

er-

the
the
toff
s
ter

a
re

gg
se
o
ind
n-
u
ff
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in the experiment: when the bacterial density becomes
high, the bacteria locally deplete chemicals such as succi
and oxygen and cease to produce the attractant aspartat
modeled this by changing the equation forc to

FIG. 9. Numerical simulation of a collapsing cylinder with
free end, showing contour plots of the density. As the cylinder
coils, aggregates are left behind. The spacing between the a
gates is determined by the density of the cylinder as it collap
~Note that the value of the density corresponding to the black c
tour changes between frames, because the density in the cyl
increases with time.! The final frame in this figure shows the de
sity profile along the centerline of the cylinder for the last conto
plot ~with four aggregates!. The maximum density is near the cuto
densityr* 5500 discussed in the text.
06190
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]c

]t
5Dc¹

2c1are2r/r
* . ~45!

If the density of bacteria is higher than the cutoff densityr* ,
the bacteria stop producing attractant. This prevents colla
to infinite density by limiting the increase in the gradient
attractant. In Ref.@7# this cutoff density was estimated~as-
suming the cutoff was caused by oxygen depletion! and
shown to vary exponentially with the overhead oxygen co
centration in the cell:r* ;eCOx. For the simulation shown in
Fig. 9, this cutoffr* 5500. Note that the density of the~un-
disturbed! cylinder in front of the retracting rim slowly ap
proaches the cutoff densityr* ; we have found in simula-
tions that the undisturbed cylinder always collapses to
density close to the cutoff value.

The formation of the density wave occurs because
retracting end perturbs the cylinder in front of it. We can fi
the time-evolution of perturbations to the cylinder, requiri
that they decay away from the free end. The most unsta
mode can be found using the method of stationary ph
@45#. If the linear growth rate isv(q), the point of stationary
phaseq* satisfies

Im
dv

dqU
q
*

50, ~46!

Re
dv

dqU
q
*

5
Re~v!

Im~q!
. ~47!

For the discussion here, we perform the calculation us
the free-space dispersion relation. A perturbation to cons
density that satisfies the boundary condition that the per
bation decay to zero at large positivez has the form

r5r01devt2qz, ~48!

c5r0t1xevt2qz, ~49!

where we have takene51 for simplicity in this calculation.
Plugging into the equations and linearizing gives the disp
sion relation

v56 iAr0q1q2. ~50!

The most unstable mode is, in dimensionless units,

v* 57Ar0, ~51!

q* 57
Ar0

2
~11 i !, ~52!

v* 5
r0

2
. ~53!

These formulas demonstrate that the wavelength of
modulations is determined by the undisturbed density in
bulk of the cylinder. Since this density increases to the cu
densityr* , it follows that the wavelength of the ripples i
determined by the cutoff. Thus the biochemical parame
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COLLAPSING BACTERIAL CYLINDERS PHYSICAL REVIEW E64 061904
controlling the maximum density also determines the ch
acteristic distance between aggregates. This conclusion
be experimentally tested.

The predictions for the wavelength and velocity of t
front compare well with numerical simulations. On decre
ing r* from 500 to 140, the wavelength of the ripples i
creases from 1.4 to 2.5, in qualitative agreement with
formulas.

We remark that the basic scenario outlined in this sec
was discovered by Budrene, in unpublished experime
@24#. After observing the traveling band collapse as a cyl
der ~Fig. 1! Budrene observes fast ‘‘waves’’ propagatin
around the cylinder. Then, a fragmentation front moves al
the collapsing cylinder, leaving spherical aggregates beh
The present theory predicts a scenario that is qualitativ
similar: the fast ‘‘waves’’ correspond to the modulations
the cylinder described by the phase equation~i.e., the travel-
ing steps, described in Sec. IV A!. The fragmentation front
occurs due to the propagating instability outlined in this s
tion. Unfortunately, it is not currently possible to make
quantitative comparison of the experiments to the pres
theory, though such a comparison would prove interestin

VI. CONNECTION TO EXPERIMENTS

This paper has shown how the patterns formed byE. coli
are connected to the geometry of singularity formation in
hydrodynamic description of the bacteria. We have sketc
the features of the solution for critical~two-dimensional! col-
lapse, and developed a theory for modulations to the cy
der. The phase equation provides a useful simplified desc
tion of a perturbed cylinder. We argued that, ultimately, t
spacing of spherical aggregates is determined by the inst
ity of a pinched cylinder of bacteria.

Here we compare our work to published experiments
suggest tests of the theory. Not all the coefficients in
original equations~1! and ~2! have been precisely measure
@7# for the experimental regime of interest. In particular, n
ther the attractant production ratea nor the chemotactic co
efficient k have been measured for bacteria in the sa
chemical environment as that of the collapse experime
Thus, at this stage, we can make only order of magnit
numerical comparison with experiments. Here we use
values of the coefficients for bacteria in a liquid medium@7#:
bacterial diffusion coefficientDb5731026 cm2 sec21; at-
tractant diffusion coefficientDc51025 cm2 sec21 @46#;
chemotactic coefficientk510216 cm5 sec21; and attractant
production ratea5103 sec21 bacteria21.

An important prediction of this theory is the critical ma
of bacteria for cylindrical collapse. With the chosen para
eter values, the formation of a collapsing cylinder require
minimum number of bacteria per unit lengthM
54DbDc /(ka)533103/cm. The existence of a critica
number of bacteria for cylindrical collapse has been infer
from experiments@7#, but this number has never been d
rectly measured. We emphasize that~with experimental mea-
surements for the parametersDb , k, anda! the theory rig-
orously and precisely predicts this critical mass, allowing
direct test of the theory.
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In this paper, we have discussed the logarithmic corr
tions in two-dimensional collapse. In the experiments,
subtle corrections to the dimensional scaling laws are pr
ably not directly observable. However, the basic scaling
lations expected from the similarity solution—for examp
that the maximum density is related to the length scale
density variations byrm;L22—could be measured in ex
periments, both for cylindrical and spherical collapse. So
no quantitative and controlled measurements of the bacte
density have been performed.

To our knowledge, modulations of a collapsing cylind
have never been quantitatively measured in experiments~al-
though as mentioned above, Budrene has made qualita
observations of this effect!. The traveling and point singu
larities that we predict for a modulated cylinder may be o
servable. In particular, we predict that the radial and ax
length scales should be different for the point singular
Because the difference in these length scales arises from
corrections in two-dimensional collapse, a measuremen
these length scales would verify the existence of slow c
rections.

The modulated cylinder ultimately pinches off at a poin
We have argued that the spacing of spherical aggregate
determined by the instability of a cylinder with an end.
practice, when does the modulated cylinder pinch off~form-
ing an end!? To answer this question, we must know wh
our theory breaks down. Collapse to infinite density can
happen for bacteria, because they have finite size. It
argued in Ref.@7# that even before the hard packing dens
of bacteria is reached, oxygen depletion will stop the c
lapse. Regardless of the specific mechanism, at some
the highest-density part of the cylinder—the poi
singularity—will stop collapsing. This is the time of pin
choff, because the point singularity evolves much mo
slowly than do the neighboring, less dense regions of
cylinder.

This argument gives a testable prediction of our mod
because the spacing of aggregates depends on the max
density of the cylinder. In dimensional units, the most u
stable wavelength~and, therefore, the aggregate spacing! is

l54pADbDc

ak
rm

21/25300 cm21/2rm
21/2, ~54!

where we have used values of the coefficients from abo
Thus, varying the maximum attainable density of the bacte
should cause the aggregate spacing to change accordin
this scaling law. In Ref.@7#, a formula for how the maximum
density in a collapsed aggregate depends on the initial o
gen concentrationCOx , was derived and shown to berm
;eCOx. This implies that the wavelength of the patte
should decrease exponentially with the oxygen concen
tion; systematic experiments could test this prediction.

One prediction that can be compared with published
periments is thelower boundon the aggregate spacing th
follows from the hard-packing density of bacteria. Using t
characteristic size 10mm of E. coli, the maximum density is
approximately 109/cm3. Thus the measured aggregate sp
ing should always be above the lower bound
4-11
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lmin50.1 mm. ~55!

Although admittedly a crude prediction, this lower bou
agrees with experiments, where spacings are typically m
sured in millimeters.
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APPENDIX A: REMARKS ON NUMERICAL METHODS

The partial differential equations described in this pa
were solved using second-order in space finite-differe
methods, supplemented with adaptive mesh refinement.
time discretization used au-weighted Crank-Nicolson-type
scheme@i.e., in the equationḟ 5L f the right-hand side is
evaluated at time (n1u)Dt, where Dt is the time step#.
Typically, in the simulations with one spatial dimension,u
50.6. For the simulations in two spatial dimensions, we u
an ADI operator splitting method, which requires usingu
51. Because these methods are implicit, at each time st
matrix inversion was necessary. This is the most expen
part of the numerical method.

The most subtle aspect of the numerical simulations
ported in this paper is the mesh refinement. Without go
mesh refinement it is impossible to get close enough to
singularity to resolve the collapse; without good mesh refi
ment in the two-dimensional simulations it would be impo
sible to acquire enough decades of data to test the ph
equation theory presented in Sec. IV. The philosophy
mesh refinement employed in this paper~first explained to us
by Eggers! is to frequently implement gradual changes in t
mesh, as opposed to infrequently implementing la
changes.

Cylindrical collapse (one spatial dimension).We used a
scheme in which mesh refinement is implemented every t
the maximum density increases by 1%. During the refi
ment, the characteristic scale over which the solution va
is determined, and a mesh is constructed to resolve this s
typically, this involves making sure there are at least 1
mesh points across the region where the solution varies
nificantly. The solution on the new mesh is constructed
cubic spline interpolation of the old mesh. Because the m
is refined frequently, the changes to the solution occurr
during refinement are small, and there are no converge
difficulties after refinement. The algorithm allows us to fin
solutions over essentially arbitrary changes in the bacte
density with as few as 200 mesh points.
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We tested the algorithm on the three-dimensional prob
~spherical collapse! and confirmed that the results agree w
the known analytic solution to extremely good accuracy.

Two spatial dimensions.In two dimensions, the equation
were solved with a position grid by using standard opera
splitting techniques. The mesh is rectangular, and descr
by two functions, thex coordinatexi and they coordinateyj .
Because the one-dimensional algorithm described above
achieve good resolution with a few hundred mesh points,
possible to resolve density changes in two spatial directi
by using of order 104 mesh points. The algorithm for thes
simulations is analogous to that for the one-dimensional c
described above: every 50 time steps, thex grid ~or y grid! is
remeshed, in accordance with the criteria outlined abo
Typically we stagger the remeshing between the two dir
tions by 25 time steps.

Both the one- and two-dimensional codes were tested
tensively by checking the solutions against known analyti
results. For the one-dimensional code, significant proble
were found when simulating cylindrical collapse, as d
cussed in the next section. All of the results presented in
paper follow the philosophy that numerical results are o
believable if they can be replicated by asymptotic solutio
of the equations. For the two-dimensional code, one mi
worry that the operator splitting coupled with the remesh
induces artificial biases in the numerics; we also tested
two-dimensional code by checking that it can reproduce
scalings and the similarity solution for spherically symmet
collapse, where the solution is well known.

APPENDIX B: NUMERICAL DIFFICULTIES
FOR CYLINDRICAL COLLAPSE

Our attempts to capture numerically the logarithmic c
rections to the cylindrical collapse encountered difficultie
Here we describe our results and pose this problem as
open question. We begin by recalling a theorem concern
the cylindrical collapse of Eqs.~3!, ~4!: self-similar solutions
satisfying the boundary conditions~stationarity at infinity! do
not exist.

Our numerical calculations identified discrete solutio
that violate this theorem even as the mesh spacing tend
zero. Our simulations showed very high resolution of t
density and concentration profiles, as shown in Figs. 3 an

FIG. 10. Plot of one of the density profiles from Fig. 3, showi
each mesh point.
4-12
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we have replotted one density profile from Fig. 3 showi
the mesh points used in the simulation~Fig. 10!. This high
resolution is maintained uniformly throughout the simu
tions by our remeshing procedure: if we plot the profile
any time in similarity variables, the profile resembles that
Fig. 10. Our numerical method is putatively second-or
accurate. Although the remeshing complicates the error
diction, we would naively guess that by maintaining a we
resolved profile in similarity variables, we achieve secon
order accuracy in similarity variables.

The apparent logarithmic correction we find is shown
Fig. 11, where we plotL/At vs t. The simulation, in fact,
shows that ast→0, there is no correction. After an initia
transient phase, we find thatL/At is constant, as expected i
the absence of a logarithmic correction. Initially, we thoug
that plots like Fig. 11 were evidence for very slow (log logt)
corrections, as observed for the nonlinear Schro¨dinger equa-
tion @47#. However, we realized that these results may
biased by our remeshing and interpolation procedures, w
are not mass-conserving. As a result, the remeshing red
the total mass of the system in a roughly self-similar fashi
We therefore wondered if remeshing affects the feature
Fig. 11. We found that changing the frequency of remesh
~which changes the rate of ‘‘numerical mass loss’’! changes
Fig. 11, indicating that the result is an artifact.

After discovering this problem, we switched to a nume
cal scheme based on a mass grid. Here, the initial gri
uniformly spaced in mass increments, and the density
the radius are solved as functions of the mass. We tooe
50 in Eq. ~4!, so the radius is related to the mass by

r
]r

]m
5

1

r
. ~B1!

The boundary conditions used werer 50 at the origin, re-
flection symmetry of the density aboutr 50, and constant
density at the outer boundary. The code based on a mass
does not necessarily require remeshing. The initial g
points betweenm50 and m54 track the inner collapsing
region automatically. Apart from the change of variables, t

FIG. 11. Spurious logarithmic corrections in the radial g
simulation. Plot of the length scaleL divided byt1/2 for the simu-
lation shown in Figs. 3 and 4. The apparent constant value clos
the singularity is a result of the remeshing and interpolat
scheme, which does not conserve mass.
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code used the same type of integration~discussed in Appen-
dix A! as the radial-grid code.

In addition, we add mesh points to the simulation in r
gions where the mass changes slowly with the radius.
find this type of behavior just outside the collapsed regi
where the mass is nearly equal to 4 over several decade
radius. We add mesh points to avoid numerical errors cau
by the loss of resolution when neighboring grid points ha
very different radii. We used different criteria, for exampl
we added more points whenever the radial spacing betw
neighboring mesh points was larger than some threshold
whenever the fractional density difference between neighb
ing mesh points was above some threshold.

Our results showed similarly well-resolved profiles as t
radial-grid results. In particular, we show in Fig. 12 a profi
of the mass vs radius for a time near the singularity. N
that the plotted points are dense over the many deca
where the mass changes slowly with radius, confirming
success of the procedure described above.

The scaling ofL/At in the mass-grid simulation is als
shown in Fig. 12. The plot shows no logarithmic correction
after an initial transientL/At is constant.

Despite the high resolution shown in our plots, we we
suspicious of the results of the mass-grid simulation beca
the L/At curve is time-independent over 20 decades, s
gesting the existence of a similarity solution~in violation of
the aforementioned theorem!. We looked for numerical arti-
facts by changing the number of mesh pointsN, and found
changes in our results. For example, the singular time—
time at which the density becomes infinite—varies logari

to
n

FIG. 12. Cylindrical collapse with a mass grid. Top, mass a
function of radius. Bottom, the length scaleL divided byt1/2. This
simulation has a total mass54.5 and an 105 initial grid points.
4-13
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mically with the number of pointsN ~Fig. 13!. We do not
understand why the singular time found by our suppose
second-order method varies as lnN.

It is noteworthy that these results disagree with the the
of Herrero and Velazquez@26#, who predict that the form of
the logarithmic correction is

L

At
;exp~2A2/2Au ln tu!. ~B2!

This form is a strong log correction that we thought would
observable in our simulations. We do not know if the d
agreement is because of the inadequacies of our nume
this is an interesting problem for future research.

APPENDIX C: PHASE EQUATION FOR A BACTERIAL
CYLINDER

In this section, we fill in the details of the calculation
the phase equation. Evaluating the coefficients in Eq.~28!,
we find @48#

F~R0 ,C0!5R01
hR08

2
, ~C1!

G~R0 ,C0!5R01
hR08

2
2

hR0C08

2
, ~C2!

H~R0 ,C0!52R01
1

4
@7hR081h2R0925hR0C08

2h2~R0C08!8#. ~C3!

FIG. 13. The singular time in the simulation vs number of g
points. The solid line shows a logarithmic fit to the points. T
simulations used a mass grid with total massM54.5 and boundary
conditions as described in the text.
an
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e
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To evaluate the solvability condition, we need to find t
zero mode of the adjoint to the operatorL found by linear-
izing the original equations. In this case,L is the matrix

S ¹22“•~“C0• ! 2“•~R0• !

1 ¹2 D . ~C4!

All of the terms in L are self-adjoint except those of th
form “•(“C0•). Under the definition~for a cylinder of bac-
teria! of the inner product̂ f ,g&5*rdr *dz f g, we find the
adjoint

@“•~“C0• !#†52] rC0] r , ~C5!

which gives the adjoint linear operator

L†5S ¹21“ rC0“ r 1

2“•~R0“• ! ¹2D . ~C6!

This linear operator possesses a simple zero mode:L†(1,0)
50. The coefficients of the phase equation thus become

c15^1,F~R0 ,C0!&, ~C7!

c25^1,G~R0 ,C0!&, ~C8!

c35^1,H~R0 ,C0!&. ~C9!

A subtlety comes when we evaluate the inner produ
we must integrate~in similarity variables! to the limit of
validity of the similarity solution. For a cylinder, this uppe
limit is h* , the radius at which the solution matches on
the outer solution. From the asymptotics discussed ear
we use thath* ;A21/25 f (t). Evaluating the inner products
and taking the limitt→0, we arrive at the result

c15
24

f 2
, ~C10!

c254, ~C11!

c3524. ~C12!

The resulting phase equation is

t t11

f 2
5tzz2

tz
2

t
. ~C13!
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